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1. Introduction

In this paper, a continuum model for materials that can undergo martensitic phase

transformations is developed and applied to the study of several problems that involve

such transformations. Among other things, the continuum model that is developed

provides the correct material symmetry group for each phase of the material, and

results in the corresponding boundary value problem being in a form that permit

direct linearization, while still retaining finite shape deformations for the martensite

phases. All of the problems that this continuum model is applied to in this paper

deal with the issue of which phase or which variant of martensite is preferred during

the growth process when a boundary traction is applied.' Among these problems are

the case of a uniaxial tensile traction applied to a cylindrical body, and the case of

a hydrostatic pressure applied to a material that has a finite shape deformation with

an infinitesimal dilatation.

The term martensitic phase transformation was originally given to the diffu-

sionless phase transformation that occurs when the high temperature austenite phase

of a steel is quenched, and the term martensite was originally given to the phase

that is created from this solid-solid phase transformation. The term martensitic phase

transformation has since been given to almost all solid-solid phase transformations that

proceed by a diffusionless cooperative movement of atoms at the phase boundary,

involve a change in crystal structure, have a distinct orientation relation between

the crystal lattices of the parent phase and the product phase, have a deformation or

associated with the product phase, and have continuity of displacements, with possible "

discontinuity of strain, at the phase boundary.2 Similarly, the phase that is created I U

Tis continuum model was also applied to the study of the tempemrtue at the interfce and the quas.-ac (QP0 •_42A
motioM of a two-phase diermoelastc bar (9]. (101. and to the study of the longitudinal fiee vibitions of a finite
fixed-fiee two-phase elastic bar (9], [11l.

Seet 18 and (151 for mom detailed and compmhensive disucussions about manensitic phase transfonations.
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by a transformation that is considered to be martensitic is sometimes referred to

as the martensite phase of the given material. In this paper, when a martensitic

phase transformation between a high temperature phase and a low temperature

phase of a material is being considered, the high temperature phase will usually

be referred to as the austenite phase, and the low temperature phase will usually be

referred to as the martensite phase, regardless of which phase is being created by the

martensitic phase transformation. Additionally, the martensitic phase transformation

that creates the austenite phase may sometimes be referred to as the austenite phase

transformation, and the martensitic phase transformation that creates the martensite

phase may sometimes be referred to as the martensite phase transformation.

As mentioned above, the martensite phase is characterized by having a

deformation relative to the undeformed parent phase. This deformation consists

mostly of the deformation that occurs solely from the mechanisms of the martensitic

phase transformation that occur at the phase boundary. This portion of the total

deformation corresponds to an unstressed state of the martensite and will henceforth

be referred to as the shape deformation of the martensite.3 Additionally, the

strain corresponding to the shape deformation will sometimes be referred to as

the transformation strain. The shape deformation is in general a finite deformation,

and consists primarily of the deformation that would be necessary to deform the

austenite crystal lattice into the martensite crystal lattice and, for some materials,

the deformation that is necessary to maintain continuity of displacements at the

phase boundary. The remaining portion of the total deformation corresponding to the

martensite is due to the surrounding matrix material constraining the formation of the

shape deformation and/or by any applied boundary tractions. These deformations are

3 Beme the shape defomation conrsponds to an unsuessed stae of the marensitc. it can be considemd to
repmsent the undefonned marnmite.
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usually infinitesimal deformations, even though they may be greater than the yield

strain of the martensite, and in this paper they will be considered to be superimposed

upon the finite shape deformation. If the martensite is stressed, it is due solely to

these superimposed deformations.

The change in crystal structure that occurs during a martensitic phase transforma-

tion may involve a change in crystal symmetry, as is the case with austenite-martensite

phase transformations in most materials that can undergo such transformations, or

it may result in the product phase having the same type of crystal lattice as the

parent phase, but with a different orientation, as is the case when one variant of

martensite is transformed into another variant of the same martensite. The symmetry

of the crystal lattice of a material is reflected in the material symmetry group of the

material. The material symmetry group of a material restricts the functional form

of the constitutive equations of the material (see [13]). Thus, when a particle of

material in its austenite phase is transformed to its martensite phase, the material

symmetry group of that particle of material should change accordingly, and this

should be reflected in the constitutive equations of that particle of material both

before and after the transformation. This change in material symmetry group should

not only represent the change in the type of crystal lattice, it should also represent the

orientation relation between the crystal lattices of the austenite and the martensite.

In the next few sections, the continuum model for materials that can undergo

martensitic phase transformations is developed and the corresponding field equations

and jump conditions are derived for a purely mechanical process. A similar continuum

model can be developed and the corresponding field equations and jump conditions

can be derived for a process that is thermo-mechanical in a similar manner (see [91).
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2. The Eulerian Global Form of the Balance Laws

It is assumed that the process under consideration takes place at a constant,

uniform temperature and with no heat conduction. Such a process is an isothermal

and adiabatic process and is also known as a purely mechanical process. It is

assumed that this process takes place in a time interval r = [to, t•]. The body B

that is considered is assumed to occupy a regular region R at time t E r and it is

assumed that &• is a subset of the three-dimensional Euclidean space E3 . A point

or the position vector of a point in Rt is denoted by y. The traction on the surface

with unit normal n(y, t) is denoted by t(y, n, t), the body fcrce per unit volume by

b(y, t), and the mass per unit volume by ý(y, t). Also, the Eulerian form of the

velocity of the particle of material at y E Pt at time t E r is denoted by V(y, t). The

familiar Eulerian global form of the balance of mass, linear momentum, and angular

momentum are

d PdV = 0, (2.1)

ItdA + bdV- VfP vdV, (2.2)

yxtdA+ yxbdV=-- -yxpVdV, (2.3)
ODj Dt Dt

respectively, V Dt C R, and V t E r.5 Equations (2.1). (2.2), and (2.3) can be used

to derive the rate of work-energy equation given by

4 In this paper, math-italic quantities denote scalars and bold-faced quantities denote tensos. including vewms.
s In this paper. unless otherwise statd, whenever a subset of a rgular region is considered, it is assumed that
the subset is a regular subregion. Similarly. all subregions of regular regions az assumed to be regular.
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t dA + ~b VdV VfT VdV +- (1-- VdV (2.4)

1 J dt 2

8Dt Dt Dt Di

V Dt C Rt and V t E r, where r(y, t) is the true (or Cauchy) stress tensor and V.

denotes the gradient of V(y, t) with respect to y.

3. Multiple Reference Configurations and the Continuum Model

Consider a region R in E3 that the body B can occupy, in the sense thatthere

exists a suitably smooth and invertible mapping that maps R into Rt. Note that R is

not such that the body B has to occupy it at some time t E r. Such a region R can

be used as a reference configuration for the body B.

In the continuum mode.' that is developed in this paper, each phase has its

own constitutive relation. These constitutive relations, however, are not all defined

with respect to the same fixed reference configuration. Instead, each phase has its

own reference configuration for the definition of its constitutive equations, and for

the expression of its field equations. More specifically, for the continuum model

that is develped, it is assumed that each phase has a configuration corresponding

to an unstressed undeformed state, and that each phase behaves elastically for

some range of deformations about its unstressed undeformed configuration. The

reference configuration for each phase of these materials is taken to coincide with the

unstressed undeformed configuration of that phase. With respect to the undeformed

austenite phase, these reference configurations coincide the shape deformations of

the martensites.

For simplicity, in the following sections, the continuum model will be developed

and the corresponding field equations and jump conditions will be derived for a
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two-phase material. The corresponding results for a material that consists of more

than two phases can be obtained in a similar manner.

4. The Kinematics Using Multiple Reference Configurations

Consider the body B that was described in Section 2. Additionally, assume that

this body consists of two phases, which will henceforth be referred to as phase I and

phase 2. Assume that at each t E r phase 1 occupies a subregion R- of 1t, and

phase 2 occupies a subregion Rj+ of Rt, where R- U Rt = t and R- nRt = 0

(Figure 1). These two subregions of Rt are separated by an interface St which can

pass over particles of material in R1. If this occurs, R- will increase in size while

Rt decreases in size, or vise-versa, depending on the direction of motion of St.

It is assumed that there exists a configuration R of phase I that corresponds to

an unstressed undeformed state of that phase. This configuration R will be used as

a stationary reference configuration for Rt (Figure 1). Let x denote a point or the

position vector of a point in R. Let ý(x, i) be the suitably smooth and invertible

mapping which maps R into Rt at each t E r, with y = ý(x, t) = x+fi(x, t) V(x,t) E

Rxr, where u = iz(x,t) is the displacement of the point y = Y'(x,t) from the point

x at time t E r. The deformation gradient of ^ is defined as F(xt) = Vt(x,t),

and the Jacobian of F is defined as J(x, t) = detF(x, t), where it is required that J

> 0 to exclude reflections. 6 The velocity of the particle of material at y = ^ (x, t) is

defined as v(x, t) = 35'(x, t), and the Eulerian form of the velocity used in Section

2 can be defined as V(y, t) = v(k(y, t), t), where !(., t):R & " R at each t E r

is the inverse of ^. Let R- = i(R-,t), R+ = *(Rj+,t), and S = i(St, t). Note

that R- U R+ = R, R- n R+ = 0, S is the surface separating R- from R+. and S

moves within R as St moves within Rt.

6 V denoa the gradient operator with rspect to x z B.
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It is assumed that there exists a shape deformation for phase 2 with respect

to R which corresponds to an unstressed undeformed configuration of that phase.

Let R+ be the reference configuration coinciding with this shape deformation of

phase 2 for all t E r (Figure 1). We note that because R has been assumed to be

stationary and there must be continuity of displacements at the phase boundary for

all t E r, R+ will most likely be moving if a problem other than a static problem

is considered.7 Let x, denote a point or the position vector of a point in R+, and

let it(x,t) be the suitably smooth and invertible mapping that maps R+ into Rt" at

each t E r, with x, = :i(x,t) VxER+ at each t E r. This mapping il is assumed

to be given in a problem. Let F(x,t) = Vi1 (x,t) and J(x,t) = detF(x,t), with

J > 0. Let $ 1(x1 ,t) be the suitably smooth and invertible mapping that maps

R+ into Rt at each t E r, with y = M•,( t)= x- + fit(xL,t) Vx, E R+

at each t E r. Note also that y -= =1(kL(x, t), t) = (x,t) V x E R+ at each

t E r. Let F1(x1,t) = Vj5i1(x 1,t) and J1(x1,t) = detF 1(xi,t), with J, > 0.9

The velocity field of the particles of material in phase 2 as a function of xi E Rt

is given by Vt(x,, t) = V(y$ (xL, t), t) V xjE R+ at each t E r, or equivalently as

V1(x 1,t) = v(i(x1, t),t) Vx 1 E Rt at each t E r, where i(., t): R+ 1--* R+ at each

t E r is the inverse of il. Also, Xi(', t):PR ý'* Rt at each t E r represents the

inverse of ^Y.

Let N(x,t) represent a unit vector normal to S that points into R+, and let

L(x, t) represent a vector tangent to S. both at a point on S coinciding with the point

x E R at time t E r. Also, let V(x,t) represent the velocity of the point on S

coinciding with the point x E R at time t E o.9 In the following, if g(x, t) represents

7 See Section 6. Equation (6.9). for an example of this.
"V11 denotes th gradient operator with respect tozi e Rtj.
In the rest of this dtesis, apoint on the surface S that oincides with fe pointx E Rat time t e r will simply

be referred to as the point x e S. Also. note that V represents a nominal-type velocity and not the velocity of a
pointon S.
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a generic field quantity that is discontinuous at S, then g-(x, t) and g+(x, t) denote

the limiting values of g at x E S as this point x is approached from negative and

positive sides of S, respectively, in directions parallel to N(x,t).'°

Because the displacements at the interface separating two phases involved in a

martensitic phase transformation are continuous while the strains at the interface may

be discontinuous, we require that S'(x, t) be continuous on R x r, and allow the first

and second derivatives of S to be piecewise continuous on R x F, with discontinuities

occurring only at points on S. As a result of this, we have

+'(i1 (x, t), t) = ý-(x t), (4.1)

Vx E S at each t E r. Taking the differential of both sides of (4.1) while keeping

time fixed (and recalling the continuity conditions on ý) yields

( F+t+ - F-)L = 0, (4.2)

Vx E S at each t E r, and for every vector L tangent to S at x E S, where

x=- it(x,t) in F+. Differentiating (4.1) with respect to time yields

V - V- + (] +- IF- )V = o,(43

Vx E S at each t E F, where xt =- i(x,t) in V+ and F+.1

It can be shown that if given an F-, F+, and an P+ such that Equation (4.2)

is satisfied at a point on some surface, there exists vectors £ and N defined at that

point such that

F+"+ - F- = & ® N, (4.4)

lo If a piecewise continuous field quantity is discontinuous at S. it is sometimes said that the quantity jumps

across S& and an equation relating g- and g+ is sometimes referred to as a jump condidm.
" The componding forms of Equations (4.2) and (4.3) involving only one reference configuration are well
known and can be found in, e.g.. (21.
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where N is normal to the surface at that point.12 Also, note that i 0 N in this

equation is a rank-one two-tensor.

5. The Nominal Form of the Field Equations Using Multiple Reference

Configurations

In addition to the continuity requirements on k and u discussed in the previous

section, it is assumed that b is continuous V y E &l and V t E r, and that r and

its gradient are piecewise continuous V y E & and V t E r', with discontinuities

occurring only at points on St.

The global form of the balance of mass given by Equation (2.1) can be expressed

with respect to R as

d -P"=o, (5.1)
D

where D = i(Dt, t), and p = JA represents the mass per unit volume of R. Note

that since (2.1) is valid V Dt C R&, (5.1) is valid V D c R. We require that p be

continuous V x E R. Localizing Equation (5. 1) yields the familiar result that p must

be independent of time V x E R. Thus,

p(x) = AJx,t0P(3^(Xtt), (52)

V(x, t) E R x r. Note that the global field equations given by (2.1)-(2.3) are still valid

in the regions of space and time indicated there, for the case where p, r, and b have

the continuity conditions specified in this section and ^ has the continuity conditions

specified in the previous section. However, for these continuity conditions, the work-

energy equation given by (2.4) is valid only for subregions of Rt not containing a

portion of St, as will be discussed further in Section 8.
2 The cofesponding form of ftis equation with F*+F+ replaced with F', where F' = Ft'+, is well known

and can be found in. e.g.. 1141.
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For subregions D- of R-, the global forms of the balance of linear and angular

momentum for phase 1 given by (2.2) and (2.3), respectively, can be expressed with

respect to 'A as

J undA + fdV = d pvdV, (5.3)

9D- D- D-

J S~x ndA + x fdV =7- J x pvdV, (5.4)

aD- D- D-

respectively, where D- = i(D',t), a(x,t) = J(x,t)r(*(x,t),t)F-T (x,t) is the

nominal stress tensor with respect to R-, f(x,t) = J(x,t)b( (x,t),t) is the nominal

body force per unit volume of R-, and n(x) is the outward unit normal vector field

on the boundary of D-. These nominal field equations can be obtained in the usual

way from Equations (2.2) and (2.3), respectively (see, e.g., [13]).

For subregions D' of RP, the global forms of the balance of linear and angular

momentum for phase 2 given by (2.2) and (2.3), respectively, can be expressed with

respect to RI as

J ainidA +Jfid = J ptvV,(5)

I r x n jdA + _x fV- x V, (5.6)

8D + D1D

respectively, where D+ = i1 (D+,t), p•(x 1 ,t) = J,(x1,t),( '1(x 1,t),t) is the mass

per unit volume of R,, o1(x 1,t) = J 1 (x 1,t)rT(SI(xi,t),t)Fi T (XI,t) represents the

stress tensor with respect to RtI, f,(x 1,t) = J 1(xi,t)b(I'i(xt,t),t) represents the
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body force per unit volume of R+, and nl(xl,t) is the outward unit normal vector

field on the boundary of D'. Also, pj is related to p by

p(x) = (5.7)

V x E R+ at each t E r. Note that oa, fl, and ýj do not have a true nominal form

since i, is a function of time. In fact, because of this time dependence these quantities

are closer to having an Eulerian form. Note also that Equations (5.5) and (5.6) can

be obtained from Equations (2.2) and (2.3) in a manner completely analogous to that

used to obtain Equations (5.3) and (5.4), regardless of whether R+ is stationary or

whether points in RI are moving, which is the case if i, is a function of time.

Localization of the global nominal balance laws given by (5.3) and (5.4) using

(5.2) yields

diva + f = pa,
(5.8)13

aFT - FaoT,

respectively, Vx E R- at each t E r, where a(x,t) = -2v(x,t) is the acceleration

of the particle of material in R1- that corresponds to the point x E R-.

Localization of the global nominal balance laws given by (5.5) and (5.6) using

(5.7) yields

div~al + f, = PA,,

(5.9)14

I1FT = FlaTi,

respectively, V x, E R+ at each t E r, where &1 (x1 ,t) = [-!V1(i 1(x, t),t)]i(2 ,)

"13 div denows the divergence operator with respect to x E IL
14 divr deaotes the divergence operator with respect to x, E R+,.
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is the acceleration of the particle of material in RIt that corresponds to the point

x = i,(x,t) in R+ .

For subregions Dt of R, which contain a portion of St, the global form of the

balance of linear momentum given by Equation (2.2) can be expressed with respect

to It in terms of the field quantities defined on R- and R+. Localizing this equation

at points on S would then yield

(()~+
S((jo -T) +- 17-)N + p(+- ) - N) = 0, (5.10)

Vx E S at each t E r, where x, = it(x,t) in a-+ and V,+.S

The balance of angular momentum given by Equation (2.3) for a subregion Dt

of Rt containing a portion of St is automatically satisfied if the jump conditions

(4.2), (4.3), and (5.10) are satisfied at the points on S corresponding to the points

on the portion of St contained in Dr. Also, the local field equations given by

(5.2) and (5.7)-(5.9), the kinematic jump condition (4.1), or (4.2) and (4.3), and the

linear momentum jump condition (5.10) are all together equivalent to the global field

equations given by (2.1)-(2.3).

6. Elastic Materials and Multiple Reference Configurations

In the following, it is assumed that phase I behaves elastically for some range

of deformations about R- and that phase 2 behaves elastically for some range of

deformations about R+. In particular, it is assumed that phase I possesses an elastic

1S The coreponding form of this jump conditon involving only one reference configuration is well kown

and can be found in, e.g., 12). In fat. the jump conditions (4.2), (4.3), and (5.10) can formally be obtained
from the jwup conditions presented in (21 by replacing F+, v+, and a+ with F+F+, ri+, and (J64-1)

"respectively.
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potential

W = W(F(x,t), x), (6.1)

Vx E R- and VF E C+, such that the nominal stress tensor for this phase is given by

o(xt) = WF(F(x,t),x), (6.2)

Vx E R- and VF E £+, where L+ is a subset ofC+, £+ is the set of all two-tensors

with positive determinants, and £& represents the range of deformations about R-

for which phase 1 behaves elastically. Equations (6.1) and (6.2) correspond to the

standard definition of an elastic (or hyperelastic) material defined with respect to a

single fixed reference configuration, that can be found in almost any textbook on

finite elasticity (see, e.g., (13]). The constitutive equations (6.1) and (6.2) can have

these standard forms because the reference configuration R- is stationary. In fact,

as a result of R- being stationary and (6.1) and (6.2), the general field equations in

terms of the displacements for phase 1, and consequently the linearized constitutive

equations and the linearized field equations in terms of the displacements for phase

1, will all have the standard well known forms corresponding to those for elastic

materials where single fixed reference configurations are used.

For phase 2, we assume that there exists an elastic potential W, defined with

respect to R1'. It is assumed that W1 is a function of Fl. Additionally, as one

might expect, it is required that the inhomogeneity of W1 remain the same for each

particle of material in phase 2 as time progresses. If :i is a function of time, the

reference point xi E RlI for a given particle of material in phase 2 is changing as

time progresses, and a different particle of material occupies a given point xi E l1t

at different times t E r. Because of this, the inhomogeneity of W, cannot be
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expressed with respect to points x, E R'1 if :i is a function of time."6 Instead, the

inhomogeneity of W, must be represented with respect to points x in the stationary

reference configuration R+, so that the effect of the inhomogeneity of W1 on a given

particle of material in phase 2 follows that particle for all t E r. Thus, we assume

that W1 has the form

WT = W,(F,(x,,t),i(xt)), (6.3)

Vx 1 E R+, Vt E r, and VF 1 E , where &g is a subset of Z+ and represents

the range of deformations about Rt for which phase 2 behaves elastically. It is

further assumed that W1 is such that the stress tensor for phase 2 with respect to

R+ is given by

a1 (xl, t) = Wl,, (F,(x,, t), i(xt, t)) (6.4)

Vx2 E R+, Vt E r, and VF, E &.+.

As discussed in the Introduction, the symmetry of the crystal lattice of a material

is represented in the material symmetry group of that material (see [13]). It is required

that the elements of a material symmetry group of a solid be unimodular, so that they

preserve volume.'7 The material symmetry group for phase 1 is defined with respect

to R-, and the material symmetry group for phase 2 is defined with respect to R1.

These material symmetry groups restrict the functional forms of the elastic potentials

of their respective phases. More specifically, if 9(x) is the material symmetry group

for phase 1, W is required to be such that

W(FH,x) = W(F,x), (6.5)

"16 However. if R, is not a function of time, which would be appropriate for the static case, the reference
configuration Rt is stationary, and consequently the inhomogeneity of W, can be expressed explicitly with
respect to points xi E Rt*.
17 By definition, a unimodular two-tensor has a determinant equal go one.
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V H E 9(x) and V F E L+ at each x E R-. Similarly, if gi(x) is the material

symmetry group for phase 2, Wi is required to be such that

W1(FH,,x) = WI(F,,x), (6.6)

V H1 E GI(x) and V F, E £+ at each x E R+. We note that because a different

elastic potential is used for each phase, the material symmetry groups for phase 1

and phase 2 can be chosen independently of each other and arbitrarily, with the

exception that they must be subsets of the unimodular group. Consequently, the

material symmetry group of each phase can be chosen to reflect any type of crystal

symmetry with any orientation. Therefore, the change in crystal structure that takes

place during a martensitic phase transformation and the orientation relation between

the crystal lattices of the austenite and the martensite can be accurately represented.

In fact, because the elastic potential for each phase is defined with respect to the

undeformed configuration of that phase, the material symmetry group for that elastic

potential can be chosen to be the crystallographic point group corresponding to

the crystal symmetry of that phase. This certainly makes constructing the elastic

potential for each phase much more feasible.

We next require that :i has the form

Si(x,t) = I(x) + E(t), (6.7)

V x E R+ at each t E r. If it has this form, the constitutive behavior for phase

2 given by (6.3) and (6.4) results in the stress-power for any subregion of phase 2

being equal to the time rate of change of the integral of W1 over that subregion; i.e.

if i1 has the form given by (6.7),

a," VVidV = d WjdV, (6.8)

. nt I
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VD• c R and Vt e F (see [9]). For this case, it can easily be shown that the change

in the total strain energy and kinetic energy of any subregion of phase 2 in a complete

cycle is zero. This is certainly the most important property of an elastic material, and

any choice of il and the forms of W1 and the corresponding stress tensor ay that did

not result in this would not be consistent with the standard definition of an elastic

material.1 8 For the important special case where i1 is a homogeneous deformation

and there is continuity of displacements at the phase boundary when F = IVx e R

and F, = 1Vx1 E R*, at each t e r, il must have the form

i1 (x,t) = x +([x- i(t)], ii)i, (6.9)

where i(t) is any point on the interface S, and i and fi are constant vectors. We

note that ii in (6.9) has the form of an invariant plane strain [15]. Additionally, for

the i, given by (6.9) and when F = IVx r R and F1 = 1Vxj E R*, at each t 6 F, the

interface S is a plane with unit normal fi and translates with velocity V(t) = ±(r),

and all points in phase 2 translate with velocity V(t) = -(V(t) .fi)i.

7. The Domains of the Elastic Potentials

As indicated in the previous section, the elastic potentials given by (6.1) and (6.3)

are defined for finite deformations in L÷ c L÷ and i4 c L%, respectively.

Additionally, .4 is with respect to R* in the sense that the two-tensors in .4

18 Note also that if i, has the form given by (6.7), the transformation strain for phase 2 is independent
of time, which is probably most appropriate for the case considered here (i.e., for the case where
phase 2 represents a phase that is in a purely mechanical process and behaves elastically).
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represent deformations F 1 with respect to R,. The corresponding subset of L+ that

represents fl" with respect to R can be defined as

I f='/1 -= F F, where F, E +}. (7.1)

Let S+ denote the set of all symmetric positive definite two-tensors. In the

space S+, the deformations with respect to R corresponding to the undeformed

configurations of phase 1 and phase 2 are C = 1 and C = FTF, respectively.

Considering this, the sets

9+- {C/C = FTF, where F E (7.2)
S= I C/C = where P E &}

represent the domains with respect to R about C = 1 and C = FTF in S+ that

phase 1 and phase 2, respectively, behave elastically for. We note that if §+ and

SP are relatively large and 1 and C are relatively close, these two phase domains

may intersect in S+. In this case, some might consider this constitutive model to be

multivalued. Either way, an intersection of these two phase domains will not present

any difficulties in setting up or solving a boundary value problem.

Most metals, however, have phases that are not elastic for finite deformations

about their undeformed configurations. They instead have phases that have elastic-

plastic constitutive behaviors with yield stresses corresponding to infinitesimal

deformations. If the material under consideration represents such a material and

if the stresses within phase I and phase 2 are less than the yield stresses of these

phases, respectively, for all t E r, both of these phases will behave elastically in this

time interval. Additionally, in this case, because the deformations are infinitesimal

for all t E r, the linearized forms of the constitutive equations given by (6.1)
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and (6.2) about F = I and (6.3) and (6.4) about F, = 1 can be used. This

is probably most appropriate in the temperature interval containing the martensitic

start temperature, where the stress necessary to induce nucleation or growth of a

variant of martensite is less than the yield stresses of both phases. In this case,

the material will deform by a martensitic phase transformation before it will deform

by plastic deformation.' 9 This martensitic phase transformation may be associated

with the austenite phase transforming into a martensite phase, or with one variant

of martensite transforming into another variant of the same martensite, which is

also known as reorientation. Also, for this case where LC+ and &' contain only

deformations such that IV I << I and IV, 1I << 1, respectively, if xi is a finite

deformation, there is no chance that S+ and 9,+ will intersect.

8. The Driving Traction

As mentioned in Section 5, the global form of the rate of work-energy equation

given by (2.4) is not valid for subregions of Rt containing a portion of St since the

continuity assumptions that are necessary for the derivation of that equation from

Equations (2.1)-(2.3) do not exist for these subregions. For the two-phase elastic

material under consideration, the global form of the rate of work-energy equation for

subregions Dt of R1 containing a portion St of St can be expressed as

I t.iVdA+Jb. VdV-JfN.VdA

8Dt Di SO

(8.1)
d gI WdV + dgI W, dV + 0_7 p. VdV,

T~t J dtJ1 dtJP
D - D+ Dt

"19 A material deforms by a marensitic phase transformation in the sense that the cratioa of the martensite phase
produces a deformation due to the shape deformation of that mantensite.
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where D- - (D',t), D+ -= (D+, t), S- =!(St,t), D- U D+ = Dt, and

f (j+w+ _w-) 1 ((jo,-T)++o-). (F+ -F- (8.2)

The quantity fN is referred to as the driving traction, and f as the scalar driving

traction.20 The integral

J fN. VdA (8.3)
So

can be interpreted as representing the rate of work done on the interface S" by the

traction fN exerted by the body on the interface. We require that this integral be

positive so that it represents a dissipation of energy. Localizing this equation at

points on the interface S then yields

fN. V > 0 (8.4)

V x E S at each t E r. 2 Note that energy can be dissipated only at the phase

boundary, and that if fN- V = 0 V x E S at each t E r, energy is conserved. Thus,

by allowing fN. V > 0 we are in effect considering a nonconservative system even

though both phases behave elastically for points not on the interface.

We can also postulate a constitutive relation relating the scalar driving traction

to the normal component of the phase boundary velocity at each x E S (see [2]).

SRefer to (2] and [5] for morm extensive discussions about the driving traction. Also. the scalar driving
traction given by (8.2) can formally be obtained from the scalar driving traction derived in 12] by replacing
w-, .e, and r, with .w,, (Jt-1), and Ft*, respectively.
2 This &equirument is also equivalent to the second law of thermodynamics for the type of pWM Under

consideration (see (2]).
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More specifically, we can postulate that

V= -(8)

at each x E S, where t(f, x) is given and depends on the material, and V= -V. N.

This may be done primarily to provide an extra equation for the extra unknowns

the variables describing the location of the phase boundary.

9. The Linearized Problem

As mentioned in the Introduction, one of the main advantages of using the

continuum model that was developed in this paper is that the field quantities and

equations are in forms that permit direct linearization, while retaining finite shape

deformations for the martensite phases. This is the case since the displacements

for each phase are measured from the reference configuration coinciding with an

unstressed undeformed configuration of that phase (i.e. the shape deformation of that

phase), and consequently, for the appropriate boundary and initial conditions, the

displacement gradients can be considered infinitesimal.22 Another advantage of using

this continuum model is that for the linear case the nominal stress for each phase

is approximately equal to the true stress for that phase. This is very convenient for

solving certain types of boundary value problems, as will become more apparent in

Sections 13 and 14 where several of these types of problems are considered.

In the next few sections, the linearized field equations and jump conditions in

terms of the displacements for the two-phase elastic material under consideration are

considered. The general equations in terms of the unspecified elastic potentials given

by (6.1) and (6.2) for finite deformations can be obtained in a similar manner (see [9]).

"n It is ads asmmed hem that the unsuesd undefrmed configunm of each phme cneMqpMd to a iocai
minimum of the elastic potetal for that phase.
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10. The Linearized Constitutive Equations and Field Equations

In the following, it is assumed that the undeformed configurations of phase I

and phase 2 correspond to local minima of their respective elastic potentials. For the

linear problem, we assume that IVfiI << 1 Vx E R- and IVfiaI << 1 Vx 1 E R+ at

each t E r. In this case, we have for phase 1

W = W + ½vfi. (Cvfi) + o(Ivcl 3)
(10.1)

- w + ½c.(c6)+ O(+ e 3)

= cw+o (IVc 12)

T(y(x,t), t) = o(x,t) + o(IVwaI2 )

S= aT + o(IViaI2)

Vx E R- at each t E r, where s = (vfi + (VUi)T) is the infinitesimal strain tensor

for phase 1, W°(x) = W(1,x), and C(x) with C1jk1 = 8
2
W I is the elasticity

four-tensor for phase 1. For phase 2, we have

w, = WI + !VIC,, (C1 Vjih) + o(Iv1C,,I1)
(10.2)=w* + ½eL.(cIL ,) + O (1 _, 13)

OI = cIvc•, + o(IV,€,I2)

= C, e + O(Ice 12)

r,(,,(x,, t),t) -- a,(xi, t) + O(IV,•.,,I 2)
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9= - + O(IViA12)

Vx, E Rt at each t E r. where el = V(VI, + (VO,)T)
2( ~ ~ is the infinitesimal sri

tensor for phase 2, W,'(i(x1,t)) = W1(1ii(xt,t)), and C,(i(x1 ,t)) with Cqk =
F2t !5- is the elasticity four-tensor for phase 2. The elasticity tensors C8Ftij OFt•I IFtL=l

and C, are both four-tensors which contain the material coefficients and reflect the

material symmetry of phase 1 and phase 2, respectively. Additionally, both C and

C, are positive-definite, since it has been assumed that the undeformed configuration

of each phase corresponds to a relative minimum of the elastic potential for that

phase. These four-tensors also have the usual major and minor symmetries.

Substituting the constitutive equation (10.1)2 into the equation representing the

balance of linear momentum for phase I given by (5.8), and expressing a in that

equation in terms of fi yields, in a given coordinate frame,

OCik Ozk +C O-- + "fi = P 02-, (10.3)

Vx E R- at each t E r, where the second-order terms have been neglected.

Similarly, substituting the constitutive equation (10.2)2 into the equation

representing the balance of linear momentum for phase 2 given by (5.9), and

expressing A, in that equation in terms of ii and U01 yields

divi(C1 Vifi ) + ft = A, (x + (10.4)

'" 2 . d2

Vxi E R+ at each t E F, where R, =-- I (x,t) = ( 1=

t -0, and the second-order terms have been neglected. In a

given frame, the term £aI has components
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t) 0 +')]1

- k +,,+2 6k+ L~d+t
GXlk8Zln 219'iJk aXlk dt &82)

(10.5)

where iý(x,t) = 2i1 (x,t) = -AG(t). The inertial-type terms in (10.5) obviously

occur because points in R" are moving. This also results in the boundary conditions

on the boundary of R+/S 1 , where S1 = i,(St,t), being with respect to a moving

boundary. Both of these issues complicate solving the corresponding boundary value

problem, whether it be by using analytical methods or by constructing a finite

difference or a finite element computer program.

Fortunately, the boundary value problem with the balance of linear momentum

for phase 2 in the form given by Equation (10.4) does not have to be solved. Instead,

Equation (10.4) can be transformed into a more tractable equation. In particular, we

can use the mapping il and define the function ril as

fi1(x,t) = fi1(f 1(xt),t), (10.6)

Vx E R+ and Vt E r, and then solve for u t = Qi(x,t) instead of ul = fii(xj,t) in

the boundary value problem. Also, note that 6i,(x,,t) = Qit(i(x,,t),t) V x, E R+"

at each t E r.

In terms of Ul1, the elastic potential and stress tensor for phase 2 given by

Equations (10.2), and (10.2)2, respectively, become

w, = W' + ½ (Vu vU1 V). [C1(VU1Vji)] + O(IVIu1I3) (10.7)

o,= C-(VU1tVu i) + o(IVua 12)
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respectively, V x E R+ at each t E r, where x, = :i(x, t) in Vti.

Substituting (10.7)2 into the equation representing the balance of linear momentum

for phase 2 given by (5.9), and expressing the acceleration term in that equation in

terms of il and ial yields, in a given coordinate frame,

ax. Ox1, Ox. 8xi,
+ U,, Oxlt -- (10.8)

- _L of +

Vx E R+ at each t E F, where x, = ij(x,t) in Vji. From Equation (10.8), we

can observe that not only have most of the inertial-type terms been eliminated, the

resulting boundary value problem is in a completely Lagrangian description; i.e. it

is completely in terms of the coordinates of the fixed reference configuration. This

includes the boundary conditions for phase 2 being specified with respect to a fixed

boundary. The only penalty that is paid for this coordinate transformation are the

additional terms in Equation (10.8). For the important special case where i 1 is a

homogeneous deformation, phase 2 is a homogeneous material (i.e. CI is independent

of x), and f, = 0, Equation (10.8) given above reduces to

82 Oil, ai. a (
C'ilkiOxO, Ok,1 Ox,,j nt 2 = 2  (10.9)

where x, = it(x,t) in Vji. For this case, the additional terms in (10.9) contribute

only to the coefficients of the terms involving second spatial derivatives of tin. Thus,
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in at least this case, the advantages of using multiple reference configurations along

with this coordinate transformation far outweigh their disadvantages.

For the static problem, points in Rt" are stationary and it is probably much

more convenient to work in terms of uL = fiC(x1) instead of ul = Ul1(x) in the

boundary value problem. In this case the inhomogeneity of W1 can be expressed

explicitly in terms of points x1 E R+, and the equation representing the balance of

linear momentum for phase 2 would have the same form as the equation representing

the balance of linear momentum for phase 1 given by (10.3), except that all of

the quantities would have 1 subscripts and the inertial terms would, of course, be

equal to zero.

For the linear problem where it is assumed that IVfiJ << 1 V x E

R- and IV fi << 1 V x1 E Rt" at each t E F, we can consider a process where

the first and second time derivatives of 6i and 0i1 are negligible V x E R- and

V x E R+, respectively, IVI << 1, and -V is negligible, for all t E r. Such a

process corresponds to a process where the strains of each phase are infinitesimal, the

motions of each particle of each phase relative to the undeformed configuration of that

phase are negligible, the magnitude of the phase boundary velocity is infinitesimal, and

the acceleration of the phase boundary is negligible, for all t E r. In the following,

this type of process will be referred to as a quasi-static process, even though it

does not conform to the exact definition of such a process. More specifically, this

type of process is not a true quasi-static process since time is not just a parameter

in all variables of the problem, and consequently the set of all solutions as time

is varied does not consist of only static equilibrium solutions. Static equilibrium

occurs only when V = 0. For this quasi-static process, it is probably much more

convenient to solve for ut = fiC(x1) instead of u1 = Ulz(x) in the boundary value
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problem. However, unlike the static problem, points in R" are moving. Therefore,

the inhomogeneity of W1 still needs to be expressed with respect to points x E R+

(see Section 6). Thus, for a quasi-static process the balance of linear momentum for

phase 2 would have the same form as it would have for the static case, except that

aClijki/axli would be replaced by (actl/xt) (lax")

11. The Linearized Jump Conditions

The most direct form of the conitinuity of displacements condition is given by

(4.1). If we work with this condition in this form, there is nothing to linearize.

However, the jump conditions (4.2) and (4.3), which together represent the continuity

of displacements, are such that they or equations equivalent to them can be linearized.

In particular, as was mentioned in Section 4, Equation (4.2) is equivalent to Equation

(4.4). Since both & and N are real quantities in that equation, we can conclude that

the two-tensor & 0 N, and hence F+F+ - F-, has two zero eigenvalues and one

real not necessarily zero eigenvalue.? Thus, we can write the characteristic equation

for F+F+ - F- as

-A 3 + 1IA2 - 12A +1 3 =0 (11.1)

where

11= tr (]F++ - F)-

12 = { [tr (F+fF+ - F-)] - tr(F+F+ - F-)21, (11.2)

13 = det (FtfF+ - F-)

and

Ft+F+ - F- = (Vii1 )+ + (VQIV 1:iVriI)+ + (Vfl1Vji)+ - (Vf)-. (11.3)

SThis can easily be seen by working in the coordinate frame where either N or a coincides with a basis vector.
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A necessary condition for the existence of two zero eigenvalues of F+ P+ - F- is that

12 = 0, 13 = 0. (11.4)

Equations (11.4) can both be linearized with respect to Vfi and Vat1 . The set of all

vectors L that satisfy the linearized form of (4.2) can then be determined. Once this

is done, N(x, t) can be determined such that N. L = 0 V x E S at each t E r. N

can then be substituted into the linear momentum jump condition given by (5.10)

yielding three scalar equations which can be linearized with respect to Vfi and Vfil.

Consider the path of the phase boundary during a motion in the time interval r.

Next consider the special case where we assume that at each location of the phase

boundary in this path there is continuity of displacements at all points on the phase

boundary for i = 0 V x E R- and fi, = 0 V xI E R1. In this case, as can be seen

by substituting F- = F+ = 1 into (4.4), F+ must have the form

P+ = I+ i 0(11.5)

at each point on the phase boundary at each t E r, where the vectors i and fi may

both be functions of x E S.' In this case, we can conclude from substituting (11.5)

into (4.2) that the first-order approximation of L is L, where L. f-i = 0. Additionally,

in this case, the first-order approximation of the linear momentum jump condition

given by (5.10) is

(4 - o)i+ -,, -) = 0, (11.6)

where a and o. are given by their respective linear constitutive relations.

For the static case. jump conditions (4.1) and (4.2) are the same, jump condition

(4.3) is trivially satisfied, and the linear momentum jump condition given by (5.10)

4 7Ths may be a god anumpdoa for a matial thta has cmdnuity of dislawemesu at the phase bomda and
is unmsaed when it is in maic equilibrium with no applied boundary rsdo
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reduces to

(jlT-)+- a-)N= 0, (11.7)

which is equivalent to the continuity of traction across the interface. For the case

where F 4 = 1 + i ® fi (11.7) reduces to

a al -)i = 0. (11.8)

For a quasi-static process, jump conditions (4.1) and (4.2) are the same. However,

for this type of process, the first-order approximation of jump condition (4.3) is

at)= -(Vfi,)+V. (11.9)

If the displacements are to be continuous at the phase boundary for all t E r with

respect to a first-order approximation, the mapping ii should be chosen such that

(11.9) is satisfied. For the case where the shape deformation is a homogeneous

invariant plane strain for all t E I', i1 must have the form given by (6.9) in order for

(11.9) to be satisfied at each t E r (see Section 6). Also, for a quasi-static process,

the first-order approximation of the linear momentum jump condition is the same

as that for the static case.

12. The Linearized Driving Traction and Kinetic Relation

The driving traction acting on the phase boundary was presented and discussed

in Section 8. For the linear case where we assume that P+ = I + i ®fii at each point

on the phase boundary at each t E r, the driving traction given by (8.2) becomes
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O(lVzI 2,tVfL12) (12.1)

For the quasi-static case, using (4.4) and (11.7), the driving traction given by (8.2)

can be written as

f = (j+ý -w W-) -u (F+TF+ -F-). (12.2)

For the linear case and when F+ = 1 + A 0 fi, this driving traction becomes

f = (( .)- (WT ) - (a- fi) - t(12.3)

where the second-order terms have been neglected. The implications of this form of

the driving traction for the quasi-static case will be discussed further in Section 13.

As mentioned in Section 8, we can postulate a kinetic relation at the phase

boundary which relates the driving traction to the normal component of the phase

boundary velocity. It is required that this kinetic relation satisfy (8.4) so that energy

is dissipated (or conserved if the equality sign holds), instead of being created, during

a martensitic phase transformation. We next consider a kinetic relation which has the

general form

>0, f> f2

= 0, for f1•5 f 1 f2 (2.4)

<0, f < f

where the constants f, and f2 are material-dependent and are such that f, -
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0 and f2 > 0.25 'We note that such a kinetic relation satisfies (8.4). For the linear

case, a kinetic relation which has the form given by (12.4) is

1(f--2), f> f2

0, for _< f _< f2 (12.5)
1 (f - A, f<f

where f is the linearized driving traction and v1 and v2 are constants which depend

on the given material. We note that as v, and v2 -- oo, V,, --- 0 and the phase

boundary moves with the particles of material at the interface but does not pass over

them converting them from one phase to the other.

13. Reorientation

The phenomena where a boundary traction is applied resulting in the phase

boundary separating two variants of the same martensite moving and transforming

one variant into the other is known as reorientation. In a material that is fully

martensitic, reorientation takes place until all of the variants of martensite in the

material are the same variant of the same martensite,2 or the boundary traction is

removed.

The issue of which variant of martensite is preferred during the growth

process, whether the process is reorientation or simply an austenite-martensite phase

transformation where several variants of martensite nucleate at different points in the

material, is an issue that has received much attention. For the case where a uniaxial

tensile traction is applied, it has been observed from experiments in [12] that for

2 Kinetic relaons of dhu forn have been studied in [1].
6 If "is occurs in a single crystal of ausyenite, it will Mrnsform into a singl crystal of one variant of marmsits
(see (12)).
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18R martensitic alloys the variant of martensite that is preferred during the growth

process is the variant which yields the largest amount of extension due to its shape

deformation in the direction of the uniaxial tensile traction. The consistency of this

experimental observation with a minimum energy criterion is shown and discussed

in [4]. There have also been proposed criteria involving the shear traction on the

interface of the martensite,2 and criteria based on the shear stress on the plane of

slip for internally slipped martensites.

In the rest of this section, the issue of which variant of martensite is preferred for

the case of a stress-induced austenite-martensite phase transformation and for the case

of reorientation for a general state of stress at the interface are considered. The issue

of which variant is preferred for the special case of a uniaxial tensile traction applied

to a cylindrical body is then investigated. For this problem, a result is obtained that

corresponds with observations made from experiments.

13.1. The General Case

Consider the quasi-static case where the shape deformation of phase 2 is a

homogeneous invariant plane strain. In this case, the driving traction is a special

case of the driving traction given by (12.3), where & and fi are constant vectors. We

next assume that all of the variants of martensite of the material under consideration

have the same value for their elastic potentials in their undeformed states,2 and we

assume that the material has a kinetic relation of the form (12.4).

To consider the case of an austenite-martensite phase transformation, we let phase

I represent the austenite and phase 2 represent a variant of martensite. From the

' Such a critefia is discussed in. e.g.. [6).

"22 For this ompaison of die elastic potenials, they am all considered to be with respect to the same referemn

configumrao.
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assumptions given above, we can conclude that (J W + - (W*)- has the same

value regardless of which variant of martensite phase 2 represents. We next note that

(a- fi) is the traction on the interface and that (a- fi) • i is the component of this

traction in the direction of the amplitude vector of the variant of martensite that phase

2 represents multiplied by the magnitude of this amplitude vector. We also note that

the variant that has the largest negative value for its driving traction will grow at

the fastest rate. From the discussion above, we can conclude that this variant is the

variant with the largest value of (o- fi). , Thus, for the case under consideration, we

can conclude that the variant of martensite with the largest value of the component

of traction on its interface in the direction of its amplitude vector multiplied by the

magnitude of its amplitude vector will be the variant that is preferred during the

growth process in a stress-induced austenite to martensite phase transformation.

To consider the case of reorientation, we let phase I and phase 2 represent two

different variants of the same martensite. From the assumptions given previously,

we can conclude that (i WI) - (W*)- = 0 for every combination of variants that

phase 1 and phase 2 can represent. Therefore, the variant that has an amplitude vector

i and an interface normal ii that result in (o-fi) • r having the largest value will

grow at the fastest rate. We note, however, that in this case i and ii for the variant

under consideration are measured with respect to the neighboring variant across the

interface with unit normal fi.

13.2. The Case of a Unlaxial Tensile Traction

Consider a cylindrical body parallel to the unit vector el. Assume that a tensile

traction t = -or0 e1 is applied at the end with unit normal -el, a tensile traction

t = aoe 1 is applied at the end with unit normal el, and the remaining surface of the
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cylindrical body is traction free. For this case, the stress tensor

r = o0e1  e (13.1)

is a solution of the field equations, the linear momentum jump condition, and the

boundary conditions for the quasi-static process under consideration. 9 Considering

(10.1)3, the first-order approximation of a- is

a- = ooet 9 el (13.2)

For this special case, the linearized driving traction given by (12.3) becomes

f = f,. - aoacosocosa, (13.3)

wheref = (iw)+ -(W)-, a = If1, acosO = i*el, and cosa = niel.

We next note that the extension of a unit fibre of material originally parallel to

el due only to the shape deformation is

6 = IlFelI - jelle e be, - 1, (13.4)

where ( -- The component of extension in the direction of the tensile traction

is

6'e=, e el - el" el = acos4cosa. (135)

This is also equal to the extension given by (13.4) if rotations are neglected or do

not occur. From this, we can write the driving traction given by (13.3) as

f = fý' - Ob'. (13.6)

Thus, for a given 0o, the variant of martensite that yields the largest component of

extension in the direction of the uniaxial tensile traction will be preferred during

"2 Ibis tan madily be seen by expresing these equations in there Eulerian form.
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the growth process. This corresponds with the experimental observations presented

in [12].

Let i be a unit vector in the (i, fi) plane such that Z n i = 0 and Z • i > 0.

For the case of a uniaxial tensile traction described above, the (shear) component of

traction on the interface in the direction of 6 is

§ = 9. [(aoe t (9 e1)fi] = o'0cosAcosa (13.7)

where i. e, = cosk. For the case where F is a simple shear, e is parallel to i,

which results in A = •, and (13.7) becomes

S = •o0cosocosa. (13.8)

Thus, for this case, the driving traction given by (13.3) can be written as

f = f,. - aS. (13.9)

From this, we can conclude that a shear stress criterion which states that the variant

that is preferred is the variant with the largest value of S will correspond to the

variant with the largest negative driving traction for a given ao only if each variant

has a simple shear shape deformation and has the same value for Iii.

14. An Applied Uniform Hydrostatic Pressure

In this section, the effect that an applied hydrostatic pressure has on a martensitic

phase transformation in a given material is studied.?0 The two-phase elastic material

that was described in the previous sections is considered. If a given loading results

in an increase in the driving traction, that loading is considered to favor the growth

of phase 1, and if a given loading results in a decrease in the driving traction, that

30 See 181 for a discussion of this type of problem and for a list of some references where such problems arw
conddered.
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loading is considered to favor the growth of phase 2. If, on the other hand, the given

loading results in no change in the value of the driving traction, neither phase is

favored by that loading. For the problem under consideration it is assumed that a

hydrostatic pressure exists such that

"r = -pl, (14.1)

at every point of the deformed body, where p > 0. A quasi-static process is

considered where IVfi<< lVx e R and IVii1 < I1«Vx1 c R*. For this case, we can

conclude from (10.1)3 that the first-order approximation of Y- is

a- = -p1 (14.2)

It is assumed that the shape deformation of phase 2 is homogeneous and has the form

F = 1 + i ® ii. For the following, let (n/2) - 8 denote the angle between 5 and i.

Note that S is a measure of the dilatation (or volume expansion) of the shape

deformation of phase 2. For the case under consideration and when S is not

infinitesimal, the linearized driving traction given by (12.3) becomes

f = (Wý*) - (WT)-)+ pi-h+ O(jVii,2) (43
1 (14.3)

= f, + pa sin 8+O(IVii2 ,IVji 1i2),

Thus, if 8 is not infinitesimal, we can conclude from (14.3) that a hydrostatic

pressure favors the austenite phase transformation in a material where the martensite

phase is such that sin8 > 0,31 and a hydrostatic pressure favors a martensite phase

transformation in a material where the martensite phase is such that sin8 > 0.

Additionally, as can be observed from (14.3), these results are independent of the

31 This corresponds with the well known result that a hydrostatic pressure stabilizes the austenite
phase in many iron alloys [81. The martensite phases in these iron alloys have small, but not
infinitesimal, volume expansions.
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material coefficients of both the austenite and martensite. However, for the case

where 161 << 1, the term pasin6 becomes a second-order term.32 Therefore, in this

case, the lowest-order approximation of f - f, ;ý, a second-order approximation,

and the second-order terms that have been neglected in (14.3) must be retained to

obtain a lowest-order approximation of f - f,.. We note that these second-order

terms contain the material coefficients of both phases.

In the rest of this section, the case where J16 << 1 is considered. The strains

in each phase corresponding to the hydrostatic pressure are calculated, and the

continuity of displacements condition (the only nontrivial portion of the boundary

value problem) is enforced. The driving traction is then calculated to determine

what effect the hydrostatic pressure, the shape deformation, the material coefficients,

and the orientation of the phase boundary have on the sign of f - f,.; i.e. on the

martensitic phase transformation. The main result of this section is for the case where

phase 1 and phase 2 represent two different variants of the same martensite that are

twin related. For this case, a result that is expected from physical considerations is

obtained. These problems demonstrate both the convenience and accuracy of using

this continuum model.

14.1 The Assumptions

Let {et, e2 , e3 } form an orthonormal basis for vectors in E3. For the following

problem, a state of plane strain is assumed with e3 normal to the plane of plane

strain, and a quasi-static process is considered. It is assumed that both phase 1 and

phase 2 are homogeneous and have tetragonal symmetry. The case of cubic symmetry

for phase 1 and/or phase 2 can be considered as a special case, once the general

"32 Note that because p in (14.3) is related to the infinitesimal strains through the constitutive equations. it is
considered to be a first-order term in the equation representing the driving traction.
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results are obtained. It is assumed that each phase has preferred directions [13].

For the case considered here where the tetragonal symmetry reflects the symmetry

of a tetragonal crystal lattice, the three preferred directions of each phase can be

considered to be in the [1 010, [0 1 01, (0 0 1] directions of a tetragonal unit cell of

each phase, respectively. Let {h+, h+, h+} represent the preferred directions of phase

and assume that {el, e2, e3} are such that they are aligned with {h+, h1, h+},

respectively. Let { h-, h-, h-} represent the preferred directions of phase 1, with h-

in the direction of e3 and the angle between h, and el denoted by a(Figure 3). For

this plane strain problem, it is assumed that the shape deformation is homogeneous

with TF = 1+i&fi, where & and fi are in the plane of plane strain; i.e., in the {el, e 2 }

plane.33 Let 4 denote the angle between fi and el, and let 6 be defined as it was in

the beginning of this section. As mentioned above, it is assumed that 161 << 1 in the

following. It is also assumed that a plane strain hydrostatic pressure exists such that

T = -pl, (14.4)

at every point of the deformed body. Additionally, in the following analysis, we

will decompose the displacement gradients into their symmetric and skew-symmetric

parts as follows

(14.5)

where w = skewVfi, w•1 = skewVti6t.

"3 Unlek odwrwiw hncawd, for the following plane s•in problem, it is asumed that all enso includifg
vectos corteso to the two-dimensional Euclidean spm containing let, e,).



38

14.2. The Stress and Infinitesimal Strain Tensors

Considering (14.4), (10.1)3, and (10.2)3, we can conclude that the first-order

approximations of a and a, are

' -pl,
(14.6)

a1 = -pl,

respectively.34

For phase 2. because {h+, h+} coincide with {e1 , e2}, the inplane components

of infinitesimal strain tensor c, in the {e,, e2 } frame as functions of the components

of stress in that frame are

+ 0 0+ K'+ 0 0+

6+ = Kj+ K=+ 0 a4+ (14.7)

{C+ 10 0 2K1+ 2 i2 OC J
where K+ denote the components of the compliance four-tensor for phase 2 in the

{et, e2} frame (see [3], [7]).35 Substituting (14.6)2 into (14.7) yields

11 j 11 22

{2}2~ 1122 +K~2 2} (14.8)
+ 0

For phase 1, the inplane components of infinitesimal strain r in the {el, e2}

frame in terms of the stress given by (14.6), are

' Nowe that since , .a.a. and 8, are homogeneous.a - = O, r+ = it, e- =-, ad e+ = ei.
35 Note that ft compliance four-ensor is the inverse of the etls'city four-tnor. Also ian [3] and M7. onhoWic
symmetry is considered. Orthotropic symmetry and the type of eigonal symmetry consered hem wae equivalent



39{ 1 r Kjj 11(cosa)2 + Ký2j2(sinck) 2 + K-22

SJ -p {/K11 +(sina)2 + KM2 (CoS) 2 + K-22j (14.9)

61 (Kjj 11 - K;22)sin2ck

where K• 8 denote the components of the compliance four-tensor for phase 1 in

the {hT, h;) frame.

14.3. The C'ntinuity of Displacement Condition

Because the true stress is assumed to be uniform and constant throughout the

body, the linear momentum field equations and the traction jump condition are

trivially satisfied. A necessary condition for the continuity of displacements at the

phase boundary is that

det (F+fF+ - F-) =O. (14.10)

For the linear case that is considered here, the first-order approximation of L is L,

where .i = 0. In terms of the displacement gradients, the above equation becomes

det(i 0 ii + Vlfi+(i o ii) + VfU+ - Vi-) = 0. (14.11)

Using (14.5), the first-order approximation of the above equation can be written as

'(c+ - E+ + e- - c-)sin20 + eccos20 + w- - w+ = 0, (14.12)

where w- and w+ denote the w- and w+ components of w and w, in the {el, e2}

frame, respectively, and c+ has been taken to be equal to zero because of (14.8).

We note that for the linear case under consideration, the symmetric par's of

the displacement gradients of fi and fix are completely determined by the stress

distribution and are given by (14.8) and (14.9), respectively, and Equation (14.12)
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is the only equation that restricts the skew-symmetric parts of these displacernt

gradients. Substituting (14.8) and (14.9) into (14.12) and solving for w -w- yields

w+ -w- = Ew •22- K~jj)sin24 + E(Ki2- Kn1)sin(2a- 2,). (14.13)

14.4. The Driving Traction

The second-order approximation of the driving traction corresponding to the

problem under consideration is as follows:

f h f,+ p{ a6 + ii [(VI fi)i] + ½ trei - tr}, (14.14)

where i and fi are given by their lowest-order approximations. Using (14.5), (14.8),

and (14.9), the second-order approximation of the driving traction given above can

be written as

f f.,. + p{af + aw+ + ½ ap(K+i1 - K•=)sin2O + ½p[tr(K1)- tr(K1l)]}.

(14.15)

14.5. The Nondimensional Form of the Driving Traction and Infinitesimal

Rotations

Equations (14.13) and (14.15) can be written in nondimensional form by using

the following nondimensional quantities

2aw- &+_2aw+ K2+2W ,-- I + k-2 (14.16)
TK~j'j' I I-K1 K+'1 1 '

1i -= KELI K- n -_ - 2f
K+11- K+1 p•K-j'j



41

2f,. _ 2a6 j_ 1 [tr(K1) -(K 1 1)].

The nondimensional form of Equation (14.13) is

C+ - C- = a (k," - 1)sin20 +-a(k"2 - k- ) sin(2a - 20). (14.17)

The nondimensional driving traction 1 is

I = , -+- --+ -C-a + -+ a(1 -/ sin2. (14.18)

Note that C+ is a parameter in the above equation for f. We can obtain f as a

function of c- by using (14.17). The resulting equation is

I =., + +a-' ] +a( ak " - kj)sin(2a - 20). (14.19)

14.6. An Austenite-Martensite Phase Transformation

To investigate the effect of the hydrostatic pressure on an austenite-martensite

phase transformation, we assume that phase 1 represents the austenite and phase

2 represents the martensite. From the discussion in the beginning of this section,

a hydrostatic pressure will favor the austenite phase transformation if it results in

f- j1, > 0, and a hydrostatic pressure will favor the martensite phase transformation

if it results in f- 1, < 0. We note that a value for ;- and a+ in (14.18) and

(14.19), respectively, might be prescribed by some displacement boundary condition

that is applied to the material in addition to the hydrostatic pressure and that is

consistent with the assumed state of stress within the material. Thus, from (14.18),

(14.19), and the nondimensional variables given by (14.16), one can observe what



42

values for the shape deformation of the martensite, the material coefficients of both

phases, the orientation of the phase boundary, and the additional boundary conditions

will result in the hydrostatic pressure favoring the martensite phase transformation

and what values of these quantities will result in the hydrostatic pressure favoring

the austenite phase transformation. Also, we note that as 6 increases in magnitude,

the results that were obtained above for the second-order case approach the results

that were obtained in the beginning of this section for the first-order case, as, of

course, should be expected.

14.7. The Case of Twin Related Variants

Consider the case where phase 1 and phase 2 represent two variants of the same

martensite which are twin related and the isothermal process is at a temperature near

the transformation temperature. In this case we have: (1) 6 = 0, since one twin

has a simple shear shape deformation relative to the other twin; (2) f, = 0, since

JW1 (1) = W(1) for two variants of the same martensite near the transformation

temperature; (3) K+kl = KjkI, since both phases represent the same material; (4)

3 = 0, as a result of (3); and (5) a = 20, as can be seen from Figure 3.2. In this

case, the driving traction given by (14.18) becomes

f = j + a(I - k2+)sin,20, (14.20)

and Equation (14.17) becomes

.+ -C = -2a(0-k2)sin2o. (14.21)

If we now require that the deformation of one twin be symmetric with respect to

the deformation of the other twin (due to the symmetric stress distribution), we must

require that

'4- -- -0. (14.22)
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In this case, substituting (14.22) into (14.21), solving for .Z+ in the resulting equation,

and then substituting the resulting equation for C+ into (14.20), yields

f = 0. (14.23)

This is what should be expected, since everything else in the problem is symmetric,

and consequently one twin should not be preferred over the other.

15. Summary and Concluding Remarks

In this paper, a continuum model for materials that can undergo martensitic phase

transformations was developed. The continuum model was then used to study several

problems that deal with which phase or which variant of martensite is preferred

during the application of a mechanical loading.

In the continuum model that was developed in this paper, each phase has its own

constitutive equations which are defined with respect to a reference configuration that

coincides with an unstressed undeformed configuration of that phase. This reference

configuration is also used for the expression of the field equations for that phase. With

respect to the undeformed austenite phase, these reference configurations coincide

the shape deformations of the martensites. The field equations and jump conditions

for a two-phase material in a purely mechanical process were derived and discussed.

The general form of the constitutive equations that are most appropriate for the case

where each phase of the material behaves elastically were presented and discussed.

It was pointed out that the mapping representing the reference configuration for each

phase should be such that the stress-power for that phase is equal to the time rate of

change of the integral of the elastic potential for that phase, where the elastic potential

and stress tensor for that phase are defined with respect to the reference configuration

for that phase. This is the case if the mapping for each phase has the form given
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by (6.7). Additionally, one can argue that for a purely mechanical process and a

material with phases that behave elastically k, should always have the form given

by (6.7) since this is the form that i1 must have in order for P, and consequently

the transformation strain, to be independent of time. It was also pointed out that

if the reference configuration for a given phase is moving, the quantities that are

defined with respect to that reference configuration (e.g. the stress) do not have a true

nominal form. Because different elastic potentials are used for the different phases

of the material, the material symmetry groups of the different phases can be chosen

independently of each other and can be chosen to reflect any type of crystal symmetry

with any orientation. Thus, the change in crystal structure that takes place during

a martensitic phase transformation and the orientation relation between the crystal

lattices of the different phases of the material can be accurately represented. In fact,

because the elastic potential for each phase is defined with respect to the undeformed

configuration of that phase, the material symmetry group for that elastic potential

can be chosen to be the crystallographic point group corresponding to the crystal

symmetry of that phase. The driving traction and kinetic relation corresponding to

the two-phase material were also considered.

One of the main advantages of working with this continuum model is that the

field equations and jump conditions are in forms that permit direct linearization,

while still retaining finite shape deformations for the martensites. This is the case

since the field quantities for each phase are in terms of displacements that are

measured from the reference configuration corresponding to an unstressed undeformed

configuration of that phase, and consequently, for the appropriate initial and boundary

conditions, the displacement gradients can be considered infinitesimal. The linearized

field equations, jump conditions, driving traction, and kinetic relation were then
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considered. It was pointed out that working with displacements that are functions of

points on a moving reference configuration results in the accelerations in terms of

these displacements containing many inertial-type terms and results in the boundary

conditions for the phases having to be expressed with respect to moving boundaries. A

coordinate transformation that eliminates most of these inertial-type terms and results

in a completely Lagrangian description of the boundary value problem while still

working with field quantities that are defined with respect to the different reference

configurations was discussed. Another advantage of using this continuum model is

that for the linear problem the true stress for each phase is approximately equal to

the nominal stress for that phase. This is very useful for solving certain types of

boundary value problems, including the linear problems that were considered in the

rest of this paper. All of these problems dealt with the issue of which phase or which

variant of martensite is preferred during the growth process during the application of

a mechanical loading. After the general problem was discussed, the special case of

an applied uniaxial tensile traction was considered. A result that corresponds with

observations that were made from experiments was derived. The last problem that

was considered in this paper involves the application of a hydrostatic pressure to a

two-phase material with a martensite phase that has a finite shape deformation with an

infinitesimal dilatation. The case where the two phases represent two different variants

of the same martensite was then considered as a special case. It was shown that for

this case the hydrostatic pressure favors the growth of neither variant, which is what

should be expected since everything else in the problem is completely symmetric.

All of the problems that were considered in this paper demonstrate the convenience

and accuracy of using the continuum model that was developed in this paper.
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